
Size limits of self-assembled colloidal structures made
using specific interactions
Zorana Zeravcica,b,1, Vinothan N. Manoharana,c, and Michael P. Brennera,b

aSchool of Engineering and Applied Sciences, bKavli Institute for Bionano Science and Technology, and cDepartment of Physics, Harvard University,
Cambridge, MA 02138

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved September 30, 2014 (received for review June 23, 2014)

We establish size limitations for assembling structures of con-
trolled size and shape out of colloidal particles with short-ranged
interactions. Through simulations we show that structures with
highly variable shapes made out of dozens of particles can form
with high yield, as long as each particle in the structure binds only
to the particles in their local environment. To understand this, we
identify the excited states that compete with the ground-state
structure and demonstrate that these excited states have a com-
pletely topological characterization, valid when the interparticle
interactions are short-ranged. This allows complete enumeration
of the energy landscape and gives bounds on how large a colloidal
structure can assemble with high yield. For large structures the
yield can be significant, even with hundreds of particles.
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Nature uses hierarchical assembly of complicated building
blocks to make highly functional structures such as bio-

molecules, virus shells, and microtubules without any external
influence and with high fidelity. Mimicking this would not only
give more insight into biological mechanisms but would also help
realize the dream of “bottom-up” assembly that has been a cen-
tral theme of nanotechnology for many decades (1).
As in biology, the information needed for assembling arbitrary

macroscopic structures can be stored in the building blocks
through the design of their interactions and interaction rules.
Over the years great advances have been made by synthesizing
new building blocks differing in geometry, composition, and
interactions (2–10), allowing for study of more complex objects.
However, basic rules necessary for robust and efficient assembly
of a desired structure in a scalable fashion and reasonable time
scales are still not understood. A number of schemes for ap-
proaching this “inverse” statistical mechanics problem have been
proposed (11–13), but a general framework and systematic studies
are still missing. One of the essential underlying questions, having
both practical and conceptual impact, is whether any desired
macroscopic structure can be assembled with a high yield, out of
a given set of building blocks. Or are there fundamental con-
straints limiting the structures that can be effectively built?
In this paper we address these general questions using the

model system of DNA-coated particles, itself of considerable
recent interest. We consider an isolated system of N spherical
colloidal particles, each of which is isotropically coated with
DNA strands to control interparticle interactions. At the col-
loidal scale, such interactions have a range that is much shorter
than the size of the particles. The use of DNA labeling to control
binding specificity was originally pioneered for assembling
nanoparticles (14–17) into infinite crystals (18–24), where re-
cently it was demonstrated that with two species with differing
particle radii and DNA linker length a zoo of different crystal
morphologies can be created (25). Work at the colloidal scale
has begun to bear fruit (13, 17, 26–30). However, the set of possible
structures that could be coded is far more general, including
structures of any shape and size, both rigid and flexible. For ex-
ample, the number of clusters that can be assembled out of
spherical particles with fixed size increases dramatically with particle
number N, so that with only 10 particles there are 223 topologically
distinct structures with at least 3N − 6= 24 contacts (31–33).

Designing arbitrary complex structures requires using the
specificity of interactions to make the desired target the ener-
getic ground state. The most robust way of doing this is to make
every particle in the target structure different, with interparticle
interactions chosen to favor the desired local configuration in its
target structure. The interactions between different particles are
coded into an interaction matrix Î, specifying the interaction
energy between every pair of particles.
We begin by asking how high the equilibrium yield can be

when Î is coded for an arbitrary large structure, using the sim-
plest prescription in which every contact of the desired structure
binds specifically and every undesired contact does not bind. In
this paper, the yield represents the probability of successful
complete assembly of exactly N particles, in contrast to a com-
mon definition of yield as the percentage of particles from the
bulk that assemble into copies of a desired structure. Numerical
simulations using dissipative particle dynamics demonstrate that
there is a temperature regime where high-yield (>50%) assembly
is possible for a range of complex structures consisting of dozens
of particles. This is striking, because as the number of particles
grows, the number of competing states grows rapidly with N;
such a high yield implies that these states are less competitive
than naively expected. To understand why this is the case, we
study the yield of an entire family of structures, the set of rigid
clusters with N ≤ 9 particles. We design Î so each structure is the
ground state and numerically calculate the corresponding yield
curves. For clusters, the yield degrades quickly with increasing N.
However, we use the obtained insights to develop a complete
description of the low-energy excited states that compete with
the ground state, valid for asymptotically large structures. This
description explains the high observed yield for large structures
and points to the limits of equilibrium self-assembly with colloidal
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particles with short-ranged interactions. Finally, we comment on
the role and importance of kinetic effects.

Results
Designing Interactions. We study the assembly yield of arbitrary
structures by choosing the interaction energy so that the desired
structure is the ground state. This can be done uniquely for an
isolated system of N spherical particles with isotropic inter-
actions as follows: Start with the adjacency matrix Â, which is the
N ×N matrix having an element Aij = 1 if particles i and j are in
contact and Aij = 0 otherwise. We choose Î directly from Â, by
mapping nonzero elements of Â to favorable interactions in
Î and zero elements to unfavorable interactions. Every contact in
the desired structure has a bond energy −e (favorable), whereas
every other interaction has a higher energy e (unfavorable).
Setting all favorable interactions to have the same strength and
setting all unfavorable interactions to have the same strength has
been shown to optimize the equilibrium yield (34). With this
interaction matrix the different interactions between different
particles are maximally specific. If some particles have identical
sets of neighbors their interactions are indistinguishable, so these
particles are effectively of the same type. When the interaction
matrix is reduced to show the interactions between the different
particle types, it is called an alphabet (34), with the maximally
specific interactions defining the maximal alphabet.
When a structure has a unique adjacency matrix, this pro-

cedure guarantees that the desired structure has the maximal
number of contacts and is therefore the unique ground state.
However, if a structure has no mirror symmetries, then its “chiral
partner,” obtained as the object’s mirror reflection through
an arbitrary mirror plane, cannot be made to coincide with the
original object through proper rotations or translations. The chiral
partners are therefore distinct assemblies of particles, although
each particle shares the same neighbors in both (and therefore the
chiral partners have the same Â). When a structure is built out of
different types of particles it generically has no mirror symmetries,
even if the geometrical shape of the structure does.
Consequently, both chiral partners are ground states, and in

this paper we identify both as being the desired structure. For
equilibrium yield this difference is not consequential, but we will
see at the end of the paper that the simultaneous assembly of both
chiral partners can lead to kinetic effects relevant for the yield.

Assembly of Large Structures. To discover whether it is possible to
assemble large structures with high yield we use dissipative particle
dynamics (DPD) (35, 36) and measure the equilibrium yield as
a function of temperature. Our simulation contains N colloidal
spheres of diameter D, with an interaction range of 1:05D [this
range corresponds roughly to that of a DNA-coated 1-μm particle
(37)]. The colloids are immersed into a DPD solvent of smaller
particles. Colloids are modeled as 48–96 Lennard-Jones spheres if
they interact favorably and with the repulsive part of the Lennard-
Jones potential if they interact unfavorably. Simulations are run
for a range of temperatures with a volume fraction of colloids
ϕcoll = 1=30 and a larger volume fraction of solvent ϕsol ≈ 0:2.
More details are given in SI Text.
The complex structures include (i) a bipyramid with 44 par-

ticles, (ii) a bipyramid of 19 particles, (iii) a 19-particle chiral
chain structure, and (iv) a 69-particle replica of Big Ben, with
a crystalline base and a pyramidal top. Fig. 1A shows snapshots
in the time evolution of the Big Ben assembly, starting with
randomly distributed and thermalized particles. Assembly into
the desired structure occurs with high yield, and this result pre-
vails in most of the complex structures we have studied. Fig. 1B
plots yield as a function of temperature T=e for the four pre-
viously mentioned structures. Each data point is an ensemble
average over ∼100 different initial realizations, run at a fixed
temperature T for a fixed time trun. The yield is defined as the
fraction of runs in the ensemble for which all of the bonds in the
complete structure are observed at least once within a short time
window ending at time trun. This is still a conservative definition

of yield, because if the structure with all of the bonds is not
observed in the time window, even due to a single particle bond
missing, the structure is regarded as a failed assembly (see SI
Text for more details).
Our simulations exhibit several regimes as a function of tem-

perature T, with a glassy regime at low T and an equilibrium
regime at high T (SI Text). At the highest temperatures (at
T=eJ 0:16) the system is in equilibrium, but the bonds between
the colloids are short-lived, leading to small absolute yields of the
ground states. The most striking feature of the yield curves in
Fig. 1B is that the maximum yield is so high, despite the large
number of particles in the desired state; this implies that the
number of equilibria that are competing with the ground state is
relatively small.

Clusters. To uncover the landscape of equilibria that compete
with the ground state we examine a simpler problem, the as-
sembly of small clusters of particles with at least 3N − 6 contacts.
Here the complete set of structures is known for N ≤ 11 particles
(32, 33). Clusters of identical particles have a degenerate ground
state when 6≤N ≤ 9 (31, 38), with yields predominantly de-
termined by the rotational entropy, suppressing highly symmetric
clusters. Using the prescription for particle interactions (Î) de-
scribed above, we simulate the yield as a function of temperature
for each cluster with N ≤ 9. Fig. 2 plots yield as a function of
temperature T=e for all of the ground state clusters with N = 6
and 7 particles. As above, each data point is an ensemble average
over different initial condition realizations, run at a fixed tem-
perature T for a fixed time trun (SI Text). Using the positions of
particles we form an adjacency matrix and use its eigenvalues to
uniquely identify the assembled structure at trun.
The panels of Fig. 2 compare yield curves of given clusters for

identical particles with those when interactions are determined
by Î. The yield improvements are dramatic, with the most en-
hancement occurring for symmetrical clusters, where the rota-
tional entropy penalty is lifted (Fig. 2 B, F, and G). The yield
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Fig. 1. (A) Snapshots in time of DPD simulation of the Big Ben assembly. (B)
Absolute yield as a function of temperature T=e for four larger structures
described in the main text. Each data point is an ensemble average over 100
different initial condition simulations.
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curves from the clusters simulation exhibit the same phenome-
nology as those in Fig. 1. By comparing time and ensemble
averages we show that the equilibrium regime extends down to
T=e∼ 0:1. Below T=e∼ 0:1, the relaxation time of clusters be-
comes comparable to trun and the results are strongly influenced by
kinetic effects. See SI Text and Figs. S1 and S2 for more details.
Fig. 3A shows how the maximum equilibrium yield Ymax (SI

Text) depends on N for maximal alphabets of clusters with
6≤N ≤ 9 and 26 out of 223 rigid clusters with N = 10. Fig. 3A
also includes all nonmaximal alphabets (SI Text) for N = 6; 7; 8.
These are alphabets that uniquely encode for a given cluster as
the ground state but have a smaller number of different particle
types. The maximal alphabets give the highest yield, as previously
predicted (34). The maximum yield monotonically decreases
with growing N. For each N, the yield is determined by the ge-
ometry of the clusters: Fig. 3B shows that the yield of clusters
increases with decreasing second moment (i.e., with increasing
symmetry).

What Determines the Equilibrium Yield? Consider N particles with
a fixed alphabet that determines the ground-state cluster C.
Vibrationally and rotationally excited states of C preserve the
cluster’s structure without breaking interparticle bonds. This
means that our simulations would identify these states as C too.
Hence, the partition function that describes the ground state is
ZC = ð1=σCÞZ0

CZ
vib
C Zrot

C ≡ ð1=σCÞZ0
Ce

S0=kB , where σ is the symmetry
number and Zð0Þ

C the partition function given by the potential
energy of the geometrical configuration C. Zvib

C and Zrot
C are the

vibrational and rotational partition functions, respectively; these
are both entropic, with S0 the corresponding total entropy.
The states that compete for yield with the cluster C are the

low-energy excited states. In particular, a local minimum (LM)
state is a stable configuration of N particles and must have at
least one particle bond less than C. Each LM is characterized by
the number of broken bonds compared with C, BLM , each bond
costing an energy e. As an example, Fig. 4 shows the energy
landscape with the two lowest-energy local minima that arise for
the maximal alphabet of one of the N = 7 clusters. Each of these
local minima has BLM = 1. Kinetic landscapes of this type for
a few of clusters with N = 6 and 7 show that both the number of
LM and BLM is quite variable between different cluster geome-
tries (Figs. S3–S5).
The partition function of the jth local minimum is given by

Zj
LM = ð1=σLMÞZ0;j

LMe
Sj=kB , consisting of energetic and entropic

parts, Sj being the entropy. For floppy structures the entropy
includes the freedom to explore the entire set of motions con-
sistent with the imposed bond constraints. These entropies can
be calculated asymptotically in the limit of vanishing interaction
range and identical particles: In this limit they are roughly

proportional to the number of missing bonds and depend on the
geometry (39).
With a complete enumeration of the set of local minima,

the equilibrium yield of the ground-state cluster is given by
Yeq
C =ZC=ðZC +

P
jZ

j
LMÞ: To go further, we make the simpli-

fying approximation that each of the local minima with the same
number of bonds broken has the same entropy, so that Zj

LM=ZC ≈
ðσC=σLMÞ · e−Bjβe · f ðBjÞ, with β= ðkBTÞ−1 and where f ðmÞ≡
exp½ðSm − S0Þ=kB� accounts for the entropic free energy lost
from breaking m bonds. The partition function then becomes

Yeq
C =

1
1+

P
m f ðmÞNme−βme

; [1]

where Nm is the number of local minima with the number of
broken bonds Bj =m, and we set the σ factors to 1 temporarily
for simplicity of presentation. The maximum yield is determined
by the balance between Nm and the exponential penalty of higher
m. The dependence of Nm on m is a purely geometrical problem,
because the landscape of local minima depends only on the
geometry of the structure being assembled.
Note that when a designed cluster C has two chiralities we

identify both as desired ground states, thereby doubling ZC (i.e.,
introducing factor 1=2 in the sum over m).
Clusters. For the clusters, we determine Nm by completely enu-
merating the local minima for any given alphabet and cluster:
We consider all possible arrangements of the particle labels of
the given alphabet on a complete list of clusters having the same
number of particles as the given cluster and carefully remove any
duplicates. With these local minima we can check the correlation
between the maximum yield measured in simulations (see SI Text
for the definition) and the number and type of local minima. Fig.
5A plots the maximum yield of all alphabets of all N = 6; 7; 8
clusters, as a function of the number of lowest lying local min-
ima; for the clusters the minimum number of bonds broken
equals 1 or 2. The yield correlates strongly with the number of
lowest-energy LMs. Fig. 5B also considers the LMs with one
additional broken bond; the correlation improves only slightly,
implying that the yield of these small clusters is determined by
the competition between the ground state and the lowest-lying
local minima.
In these plots we also show the prediction from Eq. 1, with the

symmetry number factors reinstated. We used the entropic free-
energy loss f ðmÞ≡ const (SI Text) as the only free parameter,
obtaining a good agreement with data. The value of βe in the
curves is set to 1, representing the regime of equilibrium with
fluctuating bonds, appropriate for the simulation temperatures
that gave the maximum yields.
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Fig. 2. Absolute yield as a function of
temperature T=e for maximal alphabet vs.
identical particles, for all of the clusters
with N= 6 (A and B) and N= 7 particles (C–
G). Matrices next to the panels are the
maximal alphabet interaction matrices.
When particles in a cluster have identical
sets of neighbors, they are effectively of
the same type, making the alphabet
smaller than N (A, B, C, and F). In general,
the yield curves of the clusters with
designed interactions outperform the ones
with identical interactions. The only ex-
ception is the N=6 polytetrahedral cluster
shown in A. When all of the particles are
identical, this cluster appears ∼96% of the
time, competing with the highly symmetric
octahedron (B) and without any kinetic traps. Although introduction of specific interactions eliminates competition with the second ground state it also
introduces multiple kinetic traps that affect the yield in most of the temperature range.
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Large structures. Superficially, the observations of high yields for
large structures (Fig. 1) are even more curious in light of the
cluster results, because the extrapolated yield from Fig. 3A would
correspond to a negligible yield for Fig. 1B. This discrepancy
suggests that the dominant low-energy local minima change as N
increases. To understand this, we enumerate the local minima
for large structures and determine which local minima are
competing with the ground state. Within our prescription for
specifying Î, the low-energy local minima have a simple mathe-
matical structure. They are obtained by permuting particles in
the structure that share at least one neighbor. Using such per-
mutations we enumerate the LMs for each of the three structures
shown in Fig. 1B (SI Text). Fig. 6 shows the rapid increase of
number of LMs with growing number of broken bonds m in the
large structures. We then compute the predicted yield from Eq. 1
by including only LMs with m≤M and see that the yield quickly
converges as M is increased (we fix βe≡ 1, whereas f ðmÞ≡ 1; SI
Text). This shows that yield is dominated by low-lying LMs, in-
cluding some with more than the minimal number of broken
bonds. A special case is the chiral chain, which only has m= 1; 2
LMs owing to its quasi-1D shape.

Local Defects and Asymptotic Yield. For each of the large-structure
examples above the relevant low-lying LMs feature permutations
of only nearest-neighbor particles. We note that in case of small
clusters all LMs are obtained by permutations of two particles (SI
Text and Fig. S6). Considering an arbitrary structure, the inter-
actions given by Î imply that the permutation of faraway particles
i and j would break all their bonds with the rest of structure.
With these observations, we define a local defect as a permu-

tation of two particles i; j that are in contact or share at least one
neighbor. The energy of such a defect is determined by the local
environment of particles i; j: The number of broken bonds is

blocal  defect =#NNðiÞ+#NNðjÞ− 2 ·#NNði; jÞ; [2]

where #NNðiÞ is the number of nearest neighbors to particle i,
and #NNði; jÞ the number of nearest neighbors shared by i and j,
including the bond between i and j.
When both i; j are positioned deeply inside the bulk of the

structure, we will call it a bulk defect. Bulk defects tend to have
high energies as there are many nearest neighbors in the bulk.

Surface defects correspond to either or both of i; j on the surface
of the structure; these typically have fewer broken bonds and
lower energy (Fig. S7). Continuing the classification, the struc-
ture might have ridges and sharp apexes, leading to line and
point defects, respectively. Any low-energy local minimum is
obtained as a configuration of a particular set of local defects.
We neglect configurations where defects overlap, because as N
grows the number of such configurations is negligible compared
with the number of configurations with well-separated defect
locations. In this limit, the energy of a configuration of defects is
just the sum of the defects’ individual energies.
We can now use these ideas to understand how the yield

depends on the size of a structure. As illustrations we consider
two particular examples, a cube structure and a chain structure.
Cube. We consider a cube with face-centered-cubic arrangement
of particles and with sides of L= 10 particles. A bulk local defect
costs b3 = 16 bonds according to Eq. 2. There are N3 ’ L3 = 1;000
positions in the cube where such a defect can be located. Analo-
gously, surface, line, and point defects cost b2 = 10;   b1 = 6;   b0 = 3
bonds, having N2 ’ 6L2 = 600;  N1 ’ 12L= 120;  N0 ’ 8 posi-
tions available in the cube structure, respectively. (We simplify by
assuming there is only a single version of every defect type; e.g., all
possible surface defects have the same value b2, etc.) Using this
input we can find the number of LMs contributing to each term in
Eq. 1: For example, LMs with BLM = 9 can be created out of three

point defects, each with b0 = 3. There are
�

N0

3

�
= 56 such LMs,

because the point defects can occur at any three out of eight
corners of the cube; also, such a BLM = 9 LM could consist of one

point and one line defect, and there are
�

N0

1

��
N1

1

�
= 960 such

LMs. In total there are 1,016 LMs, giving a contribution to the
denominator of Eq. 1 of 1;016 · e−9 = 0:13 (as explained above, we
fix f ðmÞ≡ 1 and βe≡ 1). This lowers the yield to 72%. Simple
counting shows that LMs with one or two point or line defects
dominate and the total yield is about 50%. This is a surprisingly
large yield for a 1,000-particle structure.
As structure size increases the yield decreases. The same ar-

gument as above implies that if we consider a much larger cube,
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need to be broken for transition between different states. #PW is the
number of distinct pathways by which the transition can be achieved. For
example, to transition from the ground state to the top local minimum one
needs to break at least two bonds. One of the four pathways is to break
bonds between particle pairs red–purple and front-yellow–purple and then
smoothly exchange positions of purple and blue particles before recon-
necting the purple with the front-yellow.
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for example with L= 90 and ∼ 106 particles, we find a yield of
∼1%, dominated by surface and line defects. Although both cube
examples have large N � 1, the yield varies between a high value
and negligible value.
Linear chain. For the example of a linear chain with length L= 20,
we would typically have b0 = 1, N0 = 2 for (end-)point defect and
b1 = 2 for a line defect having N1 ’ L= 20 available positions.

Two line defects give the biggest contribution
�

N1

2

�
e−2·b1 , which

lowers yield to 22%, whereas adding contributions from LMs
with one or three line defects, with or without one point defect, is
enough to converge close to the final, relatively low yield of 5%.
This is in accord with our above simulation results showing low
chain yield.
Arbitrary structure. Finally, we consider an arbitrary large structure
that has large volume-to-surface, surface-to-edge, and edge-to-
corner ratios and abundant contacts so that it is rigid. We call
this a “bulky” 3D structure. Then, we can roughly estimate the
input data and use the theory to qualitatively distinguish out-
comes of considerable yield and negligible yield. Consider a
structure of linear dimension L (measured in particles), which
has point, line, surface, and bulk defects labeled by the corre-
sponding dimensionality d= 0; 1; 2;3, respectively, each defect
type costing bd broken bonds and, according to spatial dimen-
sionality, having Nd ’ Ld possible locations.
Consider contributions to the yield from LMs consisting of xd

defects of type d. For simplicity we do not consider LMs that
contain different types of defects at the same time. First we
demand that the yield stay considerable, that is, the LM contri-
bution to denominator of Eq. 1 stay much smaller than unity,

that is,
�

Nd

xd

�
· expð−bdÞ � 1. This demand leads to

expðbdÞ � Ld; [3]

where we assumed that the defects are dilute, xd � Ld, whereas
system is large Ld � 1; with these assumptions the value of xd
drops out. Intuitively, the inequality says that yield stays consider-
able if the defect cost bd is high compared with available system

size Ld, for every defect type d. The high cost of defects is consis-
tent with our assumption of their diluteness in the dominant LMs.
If, however, the defects are energetically cheap compared with

system size, that is, the condition in Eq. 3 is violated, the yield is
significantly diminished owing to LM contributions. In this case
of energetically cheap defects it can also happen that the defect
number in relevant LMs becomes large, violating the diluteness
assumption. (Notice that this regime can never happen with point
defects d= 0.) Owing to high density of defects our basic ap-
proximation of LMs as configurations of noninteracting defects
fails, but clearly we can conclude that the yield is negligible.
It is clear that this analysis can be applied to “nonbulky”

structures too, because we focused on each defect type separately.
For instance, the above example of a chain is representative of
quasi-1D structures and is a special case of the arbitrary structure
where surface and bulk defects are absent. Additionally, one can
consider structures for which the scaling of defect numbers with
structure dimension is not trivial; for example, in a planar fractal-
like structure the edge length and the number of line defects
would scale as a noninteger power of linear system size. Overall,
our analysis gives a rough but general and simple understanding
of equilibrium yield limitations based on local defects.

Chirality and Kinetic Effects. Our above theoretical estimates give
yields in reasonable quantitative agreement with simulations, in
which we indeed observe that LM configurations occur in the
assembly process. However, simulations also reveal that some
suppression of yield is due to chirality.
In accordance to our analysis of chirality, when separate parts

of the assembling structure nucleate independently they ran-
domly acquire one of the two chiralities, leading to an inherent
kinetic effect: Formed pieces with opposite chirality can never
properly join into the structure. Instead, the pieces can weakly
connect, for example along one of their edges (Fig. S8). The
detrimental contribution to yield from these effects could dom-
inate the contribution from low-lying LMs, and further analysis
of such kinetic effects should be valuable.

Discussion
To summarize, we have demonstrated through numerical simu-
lations that high-yield aggregates of coated colloidal spheres can
be created with specific, short-ranged interactions. Strikingly, our
simulations indicate that high-yield structures form with dozens
of particles. We developed a theoretical framework for under-
standing this result, based on the fact that the low-energy local
minima competing with the designed ground state consist of
configurations in which particles in the ground state structure
swap places. For example, in bulky (as defined above) structures
of hundreds of particles it is the surface defects that are most
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detrimental to yield. The scalings implied by these calculations
indicate that high-yield bulky structures can form from N ∼ 1;000
particles with specific interactions. This represents a fundamen-
tal limit for the complexity of structures that can be robustly built
out of purely equilibrium interparticle interactions.
Our focus on maximally specific interactions not only enables

the local defect analysis but also prevents transitioning between
different structures without breaking any bonds. Still, in nonrigid
structures global floppy modes (which do not change the bond
network) could influence the yield, and we leave this question for
future study.
We note that there are technological challenges with imple-

menting the high-yield DNA-coated colloid schemes outlined
here: Our maximal interaction specificity construction requires
a different DNA strand to mediate the interaction for every
contact (e.g., because a particle in a bulk crystal has of order six
nearest neighbors, that many different types of strands per par-
ticle are required). Although the practical limit of how many
different types of strands per particle can be used is much higher
than what we require (40), the density of strands is not high enough
yet to avoid kinetic effects (40). Nonetheless, it is possible to im-
plement the basic schemes outlined here with nonmaximal alpha-
bets, in which the number of different strands on each particle is
less than the number of contacts. If carefully chosen, a nonmaximal
alphabet uniquely identifies a target structure—although having
more low-energy excited states, leading to a smaller yield. We have
included such nonmaximal alphabets in our simulations of clusters
(Fig. 5), and the yields can still be significantly higher than with
nonspecific interactions.
There are other opportunities to further increase yield by re-

moving the assumption of equilibrium interactions, which was

the basis of our analysis. For example, recent work (41) has
shown that in a system with a fixed number of building blocks
kinetic effects can be critical for achieving successful assembly.
One example of nonequilibrium design that is natural for col-
loidal assembly is to allow some of the bonds to be irreversible.
Any irreversible bond that does not limit pathways out of local
minima will increase the yield of the ground state. The assembly
of complex systems in biology suggests other ways of beating the
equilibrium threshold, including (i) the possibility of using error
correction, by allowing energy consuming reactions to bias to-
ward the correctly formed structure, and (ii) including allosteric
interactions, in which the binding energy of a particle depends on
the set of particles that it binds to. Determining how best to
implement these schemes with colloid-mediated DNA inter-
actions is an important topic for future research.

Materials and Methods
A detailed description of our simulations together with one simulation movie
(Movie S1) is included in Supporting Information.
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