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SI Text

SI Simulation Details
We use DPD techniques (1, 2) to simulate self-assembly of
structures show in Figs. 1 and 2 and all clusters discussed in Figs.
3 and 5 of the main text. Our specific simulation setup was first
introduced in ref. 3. Similar to refs. 4 and 5, our system consists
of two types of particles: (i) solvent particles, modeled as stan-
dard DPD beads with soft repulsion, dissipative, and random
interaction, and (ii) colloidal particles, which are larger DPD
beads that have the conservative force between two colloids re-
placed with 48–96 Lennard-Jones interaction.
The dynamics of each particle in our simulation is governed by

Newton’s equations of motion:

dri
dt

= vi; mi
dvi
dt

= f i; [S1]

where ri is the position vector of particle i, vi is its velocity, and
mi is its mass. All of the particles in our simulation have equal
mass m= 1 (unit of mass in our simulation). The force acting on
particle i is composed out of three parts:

f i =
X
j≠i

FD
ij +FR

ij +FC
ij ; [S2]

where FD is the dissipative force, FR is the random force, and FC

is the conservative force. The dissipative force is

FD
ij =−γωD�rij��r̂ij · vij�r̂ij; [S3]

where γ is the viscosity coefficient, vij = vi − vj is the relative ve-
locity of particles i and j, rij = jri − rjj is the distance between the
centers of particles i and j, r̂ij = rij=rij is a unit vector, and ωD is
a distance-dependent weight function. The random force is

FR
ij =
�
1
. ffiffiffiffiffi

Δt
p �

σωR�rij�θijr̂ij; [S4]

where σ is the noise strength, ωR is a distance-dependent weight
function, Δt is the simulation time step, and θij is a random vari-
able. Instead of taking θij to be a variable with a Gaussian dis-
tribution and unit variance, as is standard in DPD simulations, in
this work we use θij =

ffiffiffi
3

p ð2 · ζ− 1Þ, where ζ is a uniformly dis-
tributed random number ζ∈Uð0;1Þ (6). This choice makes the
simulation very efficient and the results are basically indistin-
guishable from those calculated using Gaussian numbers. To
ensure momentum conservation, in DPD algorithms θij = θji.
One of the two weight functions ωD and ωR can be chosen

arbitrarily, therefore fixing the other weight function (1, 2, 7). To
ensure that the system has Gibbsian equilibrium the viscosity and
noise have to be related by a fluctuation dissipation theorem; this
leads to the following relations:

ωD�rij�= �ωR�rij��2; σ2 = 2γkBT=m; [S5]

where kB is the Boltzman constant and T the temperature. In our
simulations we use γ = 10. As is practiced in DPD simulations
ωR
ij =ωij, where ωij is a simple (soft) weighting function that

vanishes at some interaction range rcut:

ωij =
��

1− rij
�
rcut
�

if   rij ≤ rcut
0 otherwise:

[S6]

Because we simulate two types of particles, the interaction range
will depend on which pair is interacting. The range of interaction
rcut equals (i) rCCcut = 1:5D for two colloidal particles, where D is
the diameter of colloids, (ii) rSScut = 0:5D for two solvent particles,
and (iii) rCScut = 1:0D for the interaction between a colloidal and
a solvent particle. For the same reason, the conservative forces
will differ depending on which particles are interacting. The
colloid–colloid conservative force is modeled by interaction of
48–96 Lennard-Jones spheres with a unit diameter D= 1 and
a short interaction range of rCC = 1:05D:

FCcc
ij =

8>><
>>:
96e

 
1
r96ij

−
1
r48ij

!
r̂ij
rij

if   rij ≤ rCC

0 otherwise;

[S7]

where e is the bond strength (energy scale in our simulations).
The conservative force between two solvent (DPD) particles and
between a solvent particle and a colloid is a soft repulsion:

FC
ij = aijωC

ij r̂ij; [S8]

where ωC
ij =ωij but with rCScut = 0:75D, and aij is the repulsion pa-

rameter between particles i and j. Following ref. 2, we use
aij = 25kBT for both solvent–solvent and solvent–colloid interac-
tions and ρsol =Nsol=V = 3 for the solvent number density, where
the volume of the simulation box V follows from the colloid
volume fraction ϕcoll as V = ðNcollπD3Þ=ð6  ϕcollÞ. Our simulation
box has periodic boundaries in all three dimensions, and we use
the linked-cell algorithm to speed up the calculations (8).
To integrate equations of motion we use the standard velocity

Verlet algorithm (9). One of the advantages of DPD simulations
is the use of large time steps in the integration. However, com-
pared with soft DPD forces the Lennard-Jones forces require a
significantly shorter time step for accurate integration. There-
fore, to exploit the advantageous efficiency of DPD in our sim-
ulation, we use the multiple time step algorithm (8) with
Δt= 0:035 for DPD forces and ΔtLJ = 0:0005 for Lennard-Jones
forces, where time is measured in the units of ðD=2Þ ffiffiffiffiffiffiffiffiffi

m=e
p

.

Calibration of Simulation. The values for interaction ranges we use
are a result of calibration of our simulation based on the ex-
perimental results of ref. 10. In that work, the authors experi-
mentally study spontaneous self-assembly of identical colloidal
particles into small clusters and measure their yields. With the
use of calibrated interaction ranges (values quoted above), our
simulation reproduces the experimentally observed yields for all
clusters of N = 6; 7 and 8 identical particles.
To explain the calibration procedure, we start by considering

our simulation results for N = 7 identical particles. In ref. 10
the authors showed that there are six rigid structures that can
be assembled out of N = 7 particles (having 15 contacts), two of
which are chiral enantiomers (see cluster images in Fig. S1 B–F).
Experimentally measured relative yields of the five ground states
in equilibrium are shown to be consistent with the statistical
mechanics calculations of their partition functions (dashed and
solid horizontal lines in Fig. S1 B–F).
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In Fig. S1 we show (A) absolute and (B–F) relative yields as a
function of temperature T (in units of bond strength e) for N = 7
particles, obtained from our calibrated simulations. Each data
point is an ensemble average of 1,000 different initial condition
realizations, run at a fixed temperature T for trun = 15;000 time
steps Δt. For these simulations, we use ϕcoll = 1=30 and Ncoll = 7.
At the end of a simulation run, we identify whether a formed
structure is one of the rigid clusters: Using the positions of col-
loids we form an adjacency matrix Â (a Ncoll ×Ncoll matrix, with
an element Aij = 1 if particles i and j are in contact and Aij = 0
otherwise), calculate its eigenvalues, and compare them with the
referent values for polytetrahedron and octahedron. The eigen-
values of an adjacency matrix uniquely determine the cluster that
is formed by the particles.
It is important to note that the colloid–colloid conservative

interaction range rCC must not be too large, because that would
allow bonds between particles comprising a cluster that are geo-
metrically impossible when particles are hard spheres. The value
of the interaction range rCC ∼ 1:05D we use in all of our simu-
lations roughly corresponds to the experimentally measured range
of a DNA-coated 1 − μm particle.

Designing the Structures. To ensure that the desired cluster (or
structure) is the only ground state that can be assembled out of
Ncoll particles, we need to introduce specific interactions between
particles. In the example of clusters, following ref. 11, we find
maximal alphabets by choosing n≤Ncoll particle types such that
(i) within the same type particles interact unfavorably and (ii)
with other types particles interact favorably. Generally all par-
ticles are different n≡Ncoll except in very special cases when
multiple particles have the exact same set of neighbors, which
effectively makes their interaction rules, and thus types, in-
distinguishable; see clusters in Fig. S2 A and D.
For Figs. 3A and 5 of the main text we also used nonmaximal

alphabets for Ncoll = 6; 7 and 8, which were constructed using
a straightforward and exhaustive enumeration procedure: All
possible Ncoll ×Ncoll interaction matrices are compared with all of
the adjacency matrices of Ncoll clusters to find which ones encode
a cluster uniquely. Such interaction matrices are the sought al-
phabets where identical rows and columns represent particles of
the same type.

Temperature Regimes. In the main text we emphasized that in
general our simulations exhibit several regimes as a function of
temperature T with a glassy regime at low T and an equilibrium
melting regime at high T.
In the calibration simulations of identical particles explained in

the previous section, above T=eJ 0:16 the relative yields match
the equilibrium calculations (Fig. S1 B–F). However, the bonds
between the colloids are short-lived, leading to small absolute
yields of the ground states (Fig. S1A). With a given ensemble
size, this also leads to statistical noise in relative yields. The
equilibrium regime extends down to T=e∼ 0:1, where the noise
in the relative yields is small. Below T=e∼ 0:1, the relaxation
time of clusters becomes comparable to trun and the results are
strongly influenced by kinetic effects.
In our cluster simulations with designed interactions we ob-

serve the same temperature behavior. The equilibrium regime is
confirmed by comparing the time and ensemble averages of the
absolute yields (Fig. S2).
The simulations of large structures exhibit similar temperature

behavior; however, the melting of structures occurs rapidly at
temperatures that vary with structure size and geometry. By
comparing ensemble averages with different trun we observe that
the extent of kinetic regime depends on structure size and ge-
ometry as well but always covers the whole range T=e< 0:1.
Finally, we note that in our simulation setup a dimer completely

dissolves for T=e> 0:25. Although one might naively expect for

this to occur at T=eJ 1, the stability of bonds is also influenced
by the vibrational frequency in the Lennard-Jones potential well.

Maximum Yield in Simulations. Here we give the definition of the
maximum yield Ymax in simulations.
For comparison with theoretical prediction, we are interested

in maximal equilibrium yield. In the case of clusters (Figs. 2 and 3
in the main text), we can identify the temperature range of the
equilibrium regime, discussed in the section above, starting
roughly at T=e∼ 0:1. The highest yield in this regime occurs at
the lowest temperature; as the temperature grows we observe
increasing bond fluctuations that are detrimental to the yield.
We note that for clusters entering the glassy regime below
T=e< 0:1 the yield roughly levels off, so the extracted maximal
equilibrium yield can be identified as maximal for all temper-
atures within the yield error.
For large structures, Fig. 1 in the main text, the absolute yield

curves have a pronounced peak that occurs roughly in the range of
temperatures T=e∈ f0:10; 0:16g. Although we cannot quantita-
tively precisely identify the equilibrium regime (see Temperature
Regimes), we observe that for all structures at temperature
T ’ 0:1 the bonds switch from mostly frozen to fluctuating.
Therefore, we consider the peak yield as being in equilibrium
regime.

Simulation Details for Figs. 2, 3, and 5. Fig. 2 of the main text shows
yield curves as a result of simulations of self-assembly of small
clusters with N ∈ f6; . . . ; 10g particles having designed inter-
actions. Each data point in a yield curve is an ensemble av-
erage of 1,000 different initial condition realizations, run with
ϕcoll = 1=30 at a fixed temperature T ∈ f0:001; . . . ; 0:200g for
trun = 13;000 for Ncoll = 6, trun = 15;000 for Ncoll = 7, trun = 17;000
for Ncoll = 8, and trun = 19;000 for Ncoll = 9 and Ncoll = 10 time
steps Δt. At the end of trun a cluster is identified using the ei-
genvalues of the adjacency matrix that is constructed from the
relative positions of the particles. The section Maximum Yield in
Simulations describes how the maximal equilibrium yield, used for
Figs. 3 and 5 of the main text, is extracted from the yield curves.

Simulation Details for Fig. 1. Fig. 1B of the main text shows yield
curves as a result of simulations of self-assembly of large arbi-
trary structures with N ∈ f19; 44; 69g particles having inter-
actions designed to assemble: a square bipiramid (two sizes),
a chiral chain, and a replica of Big Ben (main text). Each data
point in a yield curve is the fraction of successful assemblies in
the ensemble of 100 different initial condition realizations, run
with ϕcoll = 1=30 at a fixed temperature T ∈ f0:001; . . . ; 0:200g
for trun = 105 for Ncoll = 19 and trun = 2 · 106 for other structures.
To define a successful assembly we consider the time window of
duration ∼ 5% · trun ending at trun. Within this time window we
check the formed bonds in ∼10 regularly spaced time frames. If
at least in one of the frames we observe the completely formed
structure, the run is considered a successful assembly. For tem-
peratures T=eJ 0:1 bonds fluctuate on time scale much shorter
than the time window. However, the time scale to transition
between local minima and ground states is longer than the time
window. The case of the chiral chain Ncoll = 19 is special, because
the quasi one dimensionality allows transitions to local minima
by breaking only two bonds. The chain is therefore more similar
to the small clusters, so we only consider one timeframe (i.e., the
state observed at trun).

SI Entropic Free Energy Loss Due to Broken Bonds
Here we discuss our approximations of the function f ðmÞ, which
represents the entropic free energy loss exp½ðSm − S0Þ=kB� in an
LM with m broken bonds (see Eq. 3 in the main text). The focus
of this paper is not on such entropic effects; however, we do need
to assign a value to f ðmÞ in the prediction of yield for the clusters
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(e.g., Fig. 5) and for the illustrative examples of large structures
(e.g., Local Defects and Asymptotic Yield and Fig. 6 in the main text).
In the analysis of cluster yields (Fig. 5), the function f ðmÞ

appears in the definition of horizontal axis variable, which is
common for all clusters. The precise value of f can vary slightly
from cluster to cluster because their LMs vary in geometry and
therefore in entropy. In lack of any such detailed knowledge, we
use the zero-th order approximation f ðmÞ= const, with const
a free parameter, which is in the end validated by the overall
match of the observed data and the theoretically predicted trend
for the yields.
As explained in the main text, Holmes-Cerfon et al. (12) found

that in the limit of vanishing interaction range and identical
particles the entropy loss is proportional to the number of missing
bonds; in other words, the approximation f ðmÞ= expðs ·mÞ, with s
a constant, could be appropriate in that limit.
We have tested this exponential approximation for a range of s

values, but in the case of clusters the limited range m= 1; 2 and
the inherent noise in the data precluded any significant de-
partures from the match of data and theory we present in Fig. 5
using the zero-th order approximation. We can therefore con-
clude that the latter approximation is suitable for the presented
analysis.
In the yield predictions for big structures (Fig. 6) there is a

wider range of broken bonds m so one might expect larger sig-

nificance of f ðmÞ. For instance, if we assume the exponential
approximation, the s effectively raises the temperature (see Eq. 3
in the main text), and we have found that our predictions of yield
and of the type of defects which dominate in the relevant LMs
are both somewhat sensitive to temperature values in the arbi-
trarily chosen range 0.1–2 (the appropriate value for tempera-
ture without the s correction is 1), although the qualitative
picture does not change. However, because calculating the en-
tropic loss in the LMs or estimating the appropriate value for s in
the exponential approximation are complicated challenges on
their own, our zero-th order approximation is in the end vali-
dated only by the fact that the Big Ben replica and chiral chain
simulations are consistent with the theoretical predictions for
bulky and linear structures.
An important point is that a local defect and its entropic

contribution (i.e., the vibrational and rotational motions allowed
by the missing bonds in the defect) depend only on the local
particle neighborhood. This means that an LM of an arbitrary
large structure will have entropic contribution similar to that of an
LM of the Big Ben replica, chiral chain, and so on, having the
same number and types of local defects. We therefore have no
reason to assume that the approximation for f ðmÞ will fail for
structures having more particles or more complicated shapes than
the Big Ben replica and other structures simulated in this paper.
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Fig. S1. (A) Absolute yield as a function of temperature T=e, measured from simulations as explained in the text. (B–F) Relative yield of the five rigid clusters
as a function of temperature T=e. Horizontal lines are referent values obtained from the experiments and partition function calculations. The onset of the
equilibrium regime is at T=e ’ 0:1.
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Fig. S2. (A–E) Absolute yield as a function of rescaled temperature T=e, measured from simulations as explained in the text. Data points are ensemble average
results and solid lines are time average results. Comparison of the two averages for each cluster reveals that the equilibrium regime extends above T=e ’ 0:1.
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Fig. S3. Energy landscape for a N= 6 cluster designed using maximal alphabet. Only the lowest-energy LM is shown. It is missing one bond compared with the
ground state and it can be obtained by permuting two particles in the ground state (Fig. S6, cluster C1). #BB* is the minimal number of bonds that need to be
broken for transition between different states. #PW is the number of distinct pathways by which the transition can be achieved. For example, to transition
from the ground state to the local minimum one needs to break at least two bonds. One of the eight pathways is to break bonds between particle pairs red–
cyan and front-purple–cyan and then smoothly exchange positions of cyan and green particles before reconnecting the cyan with the front-purple.
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Fig. S4. Energy landscape for a N= 7 cluster designed using maximal alphabet. Only the lowest-energy LMs are shown, all missing two bonds compared with
the ground state. All five minima can be obtained by permuting two particles in the ground state (Fig. S6, cluster C4). #BB* is the minimal number of bonds
that need to be broken for transition between different states. #PW is the number of distinct pathways by which the transition can be achieved. For example,
to transition from the ground state to the top local minimum one needs to break at least three bonds. One of the four pathways is to break bonds between
particle pairs red–cyan, blue–purple, and front-yellow–red and then smoothly exchange positions of red and blue particles before reconnecting the red with
the front-yellow.
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Fig. S5. Energy landscape for a N= 7 cluster designed using maximal alphabet. Only the lowest-energy LMs are shown, all missing two bonds compared with
the ground state. All six minima can be obtained by permuting two particles in the ground state (Fig. S6, cluster C5). #BB* is the minimal number of bonds that
need to be broken for transition between different states. #PW is the number of distinct pathways by which the transition can be achieved. For example, to
transition from the ground state to the top local minimum one needs to break at least three bonds. One of the three pathways is to break bonds between
particle pairs red–cyan, green–purple, and gray–green and then smoothly exchange positions of green and cyan particles before reconnecting the green with
the gray. This cluster has a mirror (chiral) pair that also has six lowest-energy LMs (mirror images of the ones shown in this figure). We note that out of the total
number of pathways written next to each of the transitions from bottom three local minima to the ground state three pathways can lead to the chiral partner
of the ground state.
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Fig. S6. All low-energy local minima of clusters designed using maximal alphabets can be obtained by permuting two neighboring particles—here we present
all of the clusters for Ncoll = 6,7 with their unique maximal alphabets. Thick bonds (red or blue) mark the particle pair whose permutation gives a local minimum
having n broken bonds (red, one bond and blue, two bonds). The note “2 × mirror” means additional LMs can be obtained by the same permutation from the
mirrored (chiral) pair of the ground state. The background colors identify particular types of zero energy motion in the floppy local minimum. These persist in
different clusters because the clusters share substructures.
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Fig. S7. An example of a local minimum state obtained by creating a single surface defect in the Big Ben replica. The Big Ben is designed using maximal
alphabet with all of the particles being of different types, but we do not distinguish them by color. (Left) Full Big Ben structure with all of the bonds. (Right) A
single surface defect. The defect is created by permuting two nearest-neighbor particles on the surface (particles 29 and 30, colored yellow). The total number
of broken bonds is six (Eq. 4 in the main text). Particles that have lost a bond are colored in cyan.
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Fig. S8. Kinetic effects owing to chirality mismatch in the example of square bipyramid made out of Ncoll = 44 particles. Although all of the particles are of
different types we do not distinguish them by color. (Left) Completely assembled square bipyramid. (Right) State from a simulation in which two parts of the
structure with opposite chiralities are in contact. Particles colored yellow have missing bonds, and these two yellow layers should be adjacent in the bypiramid.
However, owing to chirality mismatch this is impossible. To see this, consider the four-particle substructures shown. The arbitrarily chosen ordering (4–8–19 and
12–16–25) defines a direction (blue arrow) that can be away from (“+”) or toward (“−”) the fourth particle (33 and 37). All signs ± are reversed by any mirror
operation; specifically, they are opposite for any four-particle substructure in the two chiral versions of the bypiramid. The relative sign of the two chosen
substructures (4–8–19–33 and 12–16–25–37) is changed (compare Left and Right) so the two bypiramid halves (Right) have opposite chirality; the yellow layers
cannot bond owing to all of the mismatched triangles in them.

Movie S1. Visualization of a self-assembly simulation of the Big Ben replica with Ncoll = 69 particles that are all of different type.

Movie S1
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