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We calculate the ground states of hard-sphere clusters, in which 7 identical hard spherical particles bind
by isotropic short-ranged attraction. Combining graph theoretic enumeration with basic geometry, we
analytically solve for clusters of n = 10 particles satisfying minimal rigidity constraints. For n = 9 the
ground state degeneracy increases exponentially with n, but for n > 9 the degeneracy decreases due to the
formation of structures with >3n — 6 contacts. Interestingly, for n = 10 and possibly at n = 11 and n =
12, the ground states of this system are subsets of hexagonal close-packed crystals. The ground states are
not icosahedra at n = 12 and n = 13. We relate our results to the structure and thermodynamics of
suspensions of colloidal particles with short-ranged attractions.
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The structures of small clusters of atoms or particles
bear directly on problems central to materials science and
condensed matter physics, including nucleation, glass for-
mation, and self-assembly [1-3]. The first step towards
understanding the thermodynamics of a particular cluster
system is to calculate the ground states as a function of
particle number n [4]. Such minimal-energy clusters have
been catalogued for many different potentials, the most
studied being the Lennard-Jones potential [5]. But hard-
sphere clusters—collections of n nonoverlapping spheres
with an isotropic, short-ranged, attractive pair potential—
are conspicuously absent from the catalogue [6], because
global optimization methods are poorly suited for strictly
nonoverlapping particles.

Such clusters may yield insights into the self-assembly
and nonequilibrium behavior of colloidal particles.
Although the bulk phase behavior of colloidal spheres
interacting through a short-ranged depletion or DNA-
mediated interaction has been well studied [7,8], clusters
have not. The structures of energetically stable hard-sphere
clusters (““inherent structures’ [9]) that are not commen-
surate with an equilibrium crystal may provide some clues
about barriers to nucleation of colloidal crystals [10,11] or
structural motifs in hard-sphere glasses [12]. Furthermore,
colloids are natural building blocks for nanomaterials
[13,14], and the clusters we consider are analogous to
“colloidal molecules” [15]. The enumeration of hard-
sphere clusters determines the set of minimally rigid col-
loidal molecules that can be formed by self-assembly.

In this Letter, we consider the ground states of clusters
that consist of identical spherical particles with repulsive,
nonoverlapping cores and a pairwise-additive attractive
potential with a range much smaller than the particle
diameter [16]. The range of the attraction is short enough
that the total potential energy of a cluster is linearly pro-
portional to the number of contacts. Multiple ground states
are therefore possible. Our analysis avoids optimization
entirely and instead combines graph theory with geometry
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to analytically solve for clusters satisfying minimal rigidity
constraints (=3 contacts per particle, = 3n — 6 total
contacts).

Mathematically, the clusters we enumerate correspond
to minimally rigid finite sphere packings. Physically, they
represent all possible colloidal molecules that can be
formed from spherical particles with no barriers to bond
angle rotation. Our packings include as subsets many
different structures previously observed and described in
the literature, such as minimal-second-moment clusters
[17], colloidal clusters observed through capillary-driven
assembly [13,18], and Janus particle clusters [19].

In what follows, we outline our method for enumerating
packings, then discuss the results, their geometrical inter-
pretation, and their application to colloidal systems. We
focus on the ground state degeneracy, which has some
striking features; the free energy of these packings at finite
temperature will be analyzed in future work.

Our procedure for enumerating packings has two steps.
First we use graph theory to construct all possible
n-particle configurations, then we use geometry to deter-
mine which configurations correspond to minimally rigid
packings. We distinguish between two types of packings:
iterative packings, in which all possible m particle subsets
with =3m — 6 contacts also correspond to minimally rigid
packings, and noniterative packings or seeds. The majority
of packings at small n are iterative. We have derived an
analytical formula that quickly solves for all iterative
packings; however, new geometrical rules must be derived
for seeds.

The only previous effort for enumerating hard-sphere
clusters that we are aware of [20] started from two seeds, a
tetrahedron and an octahedron, and iteratively constructed
higher order packings by combining packings of lower n
with single particles. This procedure excludes any structure
that combines smaller packings larger than a single par-
ticle, or that contains a different seed. As we show, both of
these possibilities arise frequently as n increases.
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Graph theory produces the set of possible packings.—A
configuration of n particles can be described by an n X n
adjacency matrix, A. A;; = 1 if the ith and jth particles
touch, and A;; = 0 if they do not. Given the n(n — 1)/2

possible contacts between n particles, there are 2"("~1/2
possible A’s. However, most of these are isomorphic due
to particle labeling degeneracy, and thus represent the same
configuration. Enumerating nonisomorphic A’s con-
structs a complete, nonredundant set of configurations;
while much smaller, the number of nonisomorphic A’s
still grows exponentially with n [21].

Rigidity constraints further restrict the set of possible
packings. Rigidity requires (i) there be at least 3 contacts
per particle, and (ii) there be at least as many contacts as
internal degrees of freedom—thus there must be at least
3n — 6 contacts. Imposing these constraints eliminates all
but one A for n =5 particles, though above n =5,
rigidity alone does not distinguish A’s corresponding to
sphere packings.

Algebraic formulation.—Solving for packings requires
determining the distances between spheres, if a solution
exists in R3, and checking there are no overlaps. Each
element, A; j» 1s associated with an interparticle distance,
ri; = |lz; — z;||, which is the distance between particles
whose centers are located at z;, Z e If le = 1, then rij
2r, where r is the sphere radius; If ,54 0 then r;; = 2r
For A’s with 3n — 6 contacts, there are precisely as many
equations as unknowns. The particle configuration en-
coded by each A is speciﬁed by the distance matrix D,
whose elements D;; = r;;. If any D;; <2r, the particles
overlap and the structure 1s unphysmal If a continuous set
of D corresponds to a given A, the structure is not rigid.
The fundamental question is to find an efficient method for
mapping A — D.

Geometric solutions.—Numerical approaches for solv-
ing these equations cannot be guaranteed to converge to all
D, and existing algebraic geometric approaches do not
scale practically with n [22]. Instead, we use basic geome-
try to construct rules associating patterns of 1’s and 0’s in
A’s with either a given relative distance, D;;, or an

n=2:
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unphysical configuration (in which case no D =2r
exists).

First we determine if a given A is iterative by searching
for subgraphs of A corresponding to lower-n seeds. The
elements of D corresponding to these lower order seeds
are known, and the remaining distances in D can be solved
using the following property: 2 points are fixed in three-
dimensional space if they can be related to a common
triangular base. Let there exist two particles i, j whose
interparticle distance, r;; s is unknown. If there also exist 3
particles, k, p, g, with known interparticle distances (ry,,,
Tigs Tpg)> and if the distances between i, j and the 3 particle
base (7, Tiks Tigs Tjp» T'jks Tjq) are also known; then there
exists an analytical relationship for r;; [23,24]

By applying this rule sequentially to all unknown dis-
tances in an A, we can solve for all relative distances of
iterative packings. For a packing to be valid, the distances
must satisfy the triangle inequality for each i, j, k (r;; =

rix + 1i;), all bases must lead to the same {r;;}, and all
rij = 2r.

Any A that cannot be eliminated or solved in this
fashion is a potential new seed. In this case we use geome-
try to analytically solve for the unknown distances. This is
areasonable proposition if there are only a few noniterative
A’s. At n =9 there are only 5 noniterative “A’s, but at
n = 10, there are 126. This number is still a small fraction
of the total number of matrices (about 750000 at n = 10),
so while overall our procedure offers a considerable com-
putational simplification, the limiting step to the analytical
enumeration of packings remains the derivation of new
geometrical rules to solve for or eliminate seed candidates.

The packings.—For each packing of n = 10 we have
analytically solved for D [23,25]. Figure 1 shows the
packing structures up to n = 7. Structures for n = 8§, 9,
10 can be found in the supplementary information [26] and
in [23]. Table I summarizes the results. The number of
packings grows rapidly for n > 6. For 4 < n <9 there is a
single new seed at each n corresponding to a convex
deltahedron, but for n = 9 the number of new seeds grows
rapidly. Many of these are nondeltahedral.
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FIG. 1.

Minimally rigid packings for n = 2 — 7, with point groups indicated at upper right in Schoenflies notation. Structures at

n = 8, 9 can be found in the supplementary information [26], and at n = 10 can be found in [23].
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TABLE I

Total number of packings found, compared to those of [20]. Chiral structures are counted as one packing. The number of

ground states includes only the minimal-energy (maximal contact) structures, but does include enantiomers as separate states.

n Packings from [20] Packings (current study) New seeds Non-rigid packings Ground states
5 1 1 0 0 1
6 2 2 1 0 2
7 4 5 1 0 6
8 10 13 1 0 16
9 32 50 4 1 77
10 113 223 8 4 3

Each rigid packing corresponds to one D, but if a
packing is chiral, D is associated with two enantiomeric
structures, and thus with two states. We therefore identify
the point group of each packing in order to determine
chirality [23,27]. The number of states listed in Table I
includes all enantiomers. The number of chiral structures
also increases dramatically at n =9, where 27 out of
50 packings are chiral.

Up to n = 9 every packing has exactly 3n — 6 contacts,
so that all packings have the same potential energy.
Figure 2 shows that for n = 9 the ground state degeneracy
increases exponentially. But at n = 10 this trend changes
due to a small number of packings that can have 25 =
3n — 5 contacts (all other 10 particle packings have 3n — 6
contacts). There exist 3 such packings, each containing
octahedra [Figs. 3(b)-3(d)]. These three structures are the
ground states at n = 10.

Also at n = 9 we find the first example of a nonrigid
packing with 3n — 6 = 21 contacts. Although minimally
rigid, this packing has an internal rotational mode that
allows it to flex without forming or breaking bonds
[Fig. 3(a)]. Adding another particle (red) onto this seed
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FIG. 2 (color online). Number of packings versus n. Dashed
curves (labeled) correspond to number of packings with 3n — 6,

5, 4, 3 contacts. The solid blue curve shows the ground state
degeneracy. Degeneracy for n = 11 is conjectured.

yields one of the rigid n = 10 particle packings with 3n —
5 = 25 contacts [Fig. 3(b)].

Interestingly, these special packings are all subunits of
the hexagonally close-packed lattice, being combinations
of face-sharing tetrahedra and octahedra (Fig. 3). The
structure shown in Fig. 3(d) is a subunit of both the HCP
and face-centered cubic lattice. One can continue to build
on to the HCP structures to create a 3n — 4 contact struc-
ture at n = 11 and a 3n — 3 structure at n = 12 [Figs. 3(e)
and 3(f)]. The 29-contact packing (3n — 4) at n = 11 can
be formed from either Fig. 3(b) or Fig. 3(c), illustrating that
the family of sphere packings does not obey a strict tree
structure. At n = 12 the 33 contact packing (3n — 3) re-
sults from adding one more sphere to form a truncated
triangular dipyramid. In all these cases the structures are
commensurate with HCP.

Because we have not enumerated all the states for n =
11, we can only conjecture that the structures we show are
the ground states. What is clear is that the ground state
degeneracy drops dramatically at » = 10 and likely con-
tinues to oscillate with n, increasing rapidly in stretches
where the maximal number of contacts, as a function of n,
remains unchanged (as in n = 9), and decreasing or re-

FIG. 3 (color online). Structures of HCP packings. (a) Nine
particle nonrigid new seed, with nonrigid motion (corresponding
to a twisting of the square faces) shown as black arrows. (b)—
(d) Ten particle ground state packings with 3n — 5 = 25 con-
tacts. (e) Conjectured eleven particle ground state (3n — 4 = 29
contacts). (f) Conjectured twelve particle ground state (3n —
3 = 33 contacts). Packings with either octahedra joined by 3
edges or half-octahedra create faces (shown in blue) that permit
adding a sphere with 4 contacts (red). The joining of m octahedra
by one edge (d) also yields >3n — 6 contact packings.
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maining small when this functional form increases. The
latter can occur when an iterative n particle packing is
formed by adding m spheres with >3m contacts to a
minimally rigid (n — m)-particle packing. We have not
yet established whether the ground states continue to be
commensurate with a lattice packing for n > 12. But
clearly the icosahedron is not the ground state at n = 12,
nor is an icosahedron with a central sphere the ground state
at n = 13. A twelve-sphere icosahedron has only 3n —
6 = 30 contacts, and in a thirteen-sphere icosahedron the
outer spheres would not be close enough to interact with
each other.

In equilibrium we expect finite collections of attractive
colloidal spheres to form the structures we enumerate here.
For n = 9 the number of observable ““colloidal molecules”
with equivalent internal energy should exponentially in-
crease, but for n = 10 and, we conjecture for larger n also,
there are a very small number of observable packings at
low temperatures. The free energies of the packings will
vary; for example, the nonrigid structure at n = 9 should
have a higher vibrational entropy than the other structures.
We therefore expect that there will be a rich set of thermo-
dynamic structural transitions above n = 9.

Our results may connect to the nonequilibrium behavior
of bulk systems. The icosahedral energy minimum for van
der Waals clusters has long been argued [28] to imply
icosahedral order for bulk systems; but as we have shown,
icosahedra are not energy minima for hard-sphere clusters.
Thus, we do not expect icosahedral order to be a structural
motif in hard-sphere gels or glasses. Our results suggest
that the cluster behavior of attractive hard spheres could be
qualitatively different from that of many other potentials,
including Lennard-Jones; it may prove fruitful to reex-
amine experiments [11] and simulations of bulk hard-
sphere systems in light of these results . Furthermore, the
stability of HCP-like clusters at small n may influence the
nucleation of colloidal crystals.

Finally, the methods we employ to enumerate clusters
have application beyond the thermodynamics of colloidal
sphere clusters: for example, they might be generalized to
enumerate packings in a closed container, which would
allow for explicit tests of the Edwards conjecture [29] for
the entropy of a granular material.
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