Colloidal Particles and Liquid Interfaces: A Spectrum of Interactions

Thesis Type:

PhD Thesis


Young's law predicts that a colloidal sphere in equilibrium with a liquid interface will straddle the two fluids, its height above the interface defined by an equilibrium contact angle. This equilibrium analysis has been used to explain why colloids often bind to liquid interfaces, an effect first observed a century ago by Ramsden and Pickering and later exploited in a wide range of material processes, including emulsi⬚cation, water puri⬚cation, mineral recovery, encapsulation, and the making of nanostructured materials. But little is known about the dynamics of binding, or any aspect of the interaction between a particle and an interface outside of equilibrium. This thesis explores the spectrum of particle-interface interactions, from non-binding to non-adsorptive binding and ⬚finally adsorptive binding and the relaxation toward equilibrium that ensues. Chapter 2 reviews the importance of interfacial particles in materials science, and serves as a partial motivation for the work presented here. Chapter 3 describes the apparatus and experimental procedures employed in the acquisition of our data, with a short review of experiments that led to the current set. Special attention is paid to the optical apparatus and the custom sample cells we designed. Chapter 4 deals with non-adsorptive interactions between colloidal particles and liquid interfaces. A theoretical discussion founded on (but not wedded to) classical DLVO theory is presented before the results of our experiments are analyzed. It is shown that particle interface interactions may be purely repulsive or contain an attractive component that results in binding to the interface that is not associated with breach. In chapter 5 the adsorption of polystyrene microspheres to a water-oil interface is shown to be characterized by a sudden breach and an unexpectedly slow relaxation. Particles do not reach equilibrium even after 100 seconds, and the relaxation appears logarithmic in time, suggesting that complete equilibration may take months. Surprisingly, viscous dissipation appears to play little role. Instead, the observed dynamics, which bear strong resemblance to aging in glassy systems, agree well with a model describing activated hopping of the contact line over nanoscale surface heterogeneities. Finally, in chapter 6, I propose a number of intriguing experiments that build on the knowledge presented in this thesis, and probe areas that were inaccessible because of the ⬚finiteness of my tenure in graduate school.

Last updated on 03/26/2016